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Abstract

This paper addresses the diversified needs of urban cold chain distribution and proposes innovative 
solutions based on storage type multi-temperature co-distribution and mechanical type multi-
temperature co-distribution modes. We present an electric vehicle path optimization model aimed  
at minimizing total costs, taking into account time-varying speed in accordance with urban traffic patterns. 
Additionally, a genetic algorithm is designed to solve the multi-temperature co-matching optimization 
path. The study's results reveal that the storage type multi-temperature co-distribution transport mode 
offers superior economic efficiency, product security, safety, and resource utilization. By comparing and 
analyzing the results of model solving under different battery capacities, loads, and distributions speeds, 
the total cost of distribution is optimal when the battery capacity is 120 kWh, the maximum load is  
100 kg, and the normal driving speed is 60 km/h. The mechanical multi-temperature co-distribution 
mode is optimal for the total cost of distribution at a battery capacity of 100 kWh, a maximum load of 
100 kg, and a normal driving speed of 50 km/h. The study aims to provide reference significance for 
logistics companies when making route selection.
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Introduction

With the growing global concern about atmospheric 
pollution, climate change, and quality of life, the 
reduction of greenhouse gas emissions has emerged as 
a pressing challenge. Among the major contributors to 
environmental degradation, road traffic transportation 

stands out due to its substantial impact on greenhouse 
gas emissions, congestion, and noise pollution. To tackle 
these issues, researchers have been actively exploring 
the application of green logistics and sustainable 
development concepts to curtail carbon emissions 
resulting from urban vehicle transportation. In this 
context, electric vehicles (EVs) have emerged as a 
promising solution to address environmental challenges 
and align with government planning objectives. However, 
EVs are not without their limitations, with restricted 
battery range and long charging times being particularly 
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significant technical shortcomings. Consequently, the 
current implementation and applicability of electric 
vehicles are constrained. Given that the technical issues 
faced by EVs cannot be promptly resolved, the focus 
must shift towards devising strategies and optimization 
methods to mitigate carbon emissions and operational 
costs associated with transportation.

Compared with the Vehicle Routing Problem (VRP), 
the Electric Vehicle Routing Planning (EVRP) problem 
incorporates additional considerations, such as vehicle 
specifications, customer service time and location 
information, and the number of required recharges, 
owing to the limited range of electric vehicles. 
Furthermore, in addition to vehicle specifications, 
customer service time, and location information, the 
EVRP also addresses the number of charge cycles, 
charging strategy, and charging time due to the vehicle’s 
limited range. Research in the EV routing problem 
can be categorized into the following aspects: firstly, 
investigating the energy consumption patterns of EVs. 
Li’s study delves into the electric vehicle path problem, 
taking into account the constraints posed by battery 
life and battery replacement stations. The author starts 
by introducing an integrated model that incorporates 
factors such as speed, load, and distance to accurately 
measure the energy consumption and carbon emissions 
associated with electric vehicles [1]. Kim investigates 
the electric vehicle routing problem with nonlinear 
charging and discharging functions, where the rates of 
charging and discharging are state of charge dependent. 
The study explores the impact of state of charge related 
characteristics and proposes a nonlinear discharge 
function. In the distribution scenario, the vehicle’s 
cost is closely associated with its energy consumption, 
which, in turn, is influenced by the load size [2]. Pan 
addresses the issue of load variability and the stochastic 
nature of customer demand by proposing a model to 
solve the path problem for a vehicle with varying loads 
and uncertain demand [3]. He et al. investigated the 
impact of energy consumption on traffic congestion 
using an electric vehicle network equilibrium model [4]. 
Basso et al. presented a two-stage electric vehicle path 
problem aimed at enhancing the energy consumption 
estimation model that incorporates terrain and speed 
factors. The energy consumption of electric vehicles 
is influenced not only by the distance covered but 
also by various other factors, including effective load, 
speed profile (acceleration and braking patterns), road 
topography, instantaneous powertrain efficiency, and 
auxiliary equipment (e.g., air conditioner, refrigerator, 
etc.) [5]. The following aspect pertains to the electric 
vehicle charging strategy. Ge Xianlong et al. propose 
a flexible power replenishment strategy that takes into 
account both the remaining power of the vehicle and the 
number of remaining customers. This approach aims 
to ensure the efficient utilization of power resources 
[6]. Li Hao et al. developed a model incorporating 
charging queue time and charging time to investigate 
its influence on the equilibrium of a hybrid traffic road 

network [7]. Erdelic employed both single charging 
strategy and multiple charging strategy to compare and 
analyze their effectiveness in the EV path problem [8]. 
Afterward, Erdelic investigated both the partial charging 
strategy and the full charging strategy. By conducting  
a comprehensive comparison and analysis, it was found 
that the partial charging strategy leads to reduced waiting 
time and total trip duration. However, it comes with the 
trade-offs of increased driver’s psychological burden, 
 a higher number of vehicles, and longer driving distances 
[9]. Li et al. proposed a wireless on the road charging 
technology, wherein vehicles are charged while driving. 
They developed a multi-objective path optimization 
model using model predictive control. This model 
aims to determine the most optimal path for drivers, 
considering both the wireless charging strategy and the 
plug-in charging strategy [10]. Froger et al. constructed 
a charging station with capacity limitations to address 
the EVRP model. They aimed to investigate the EVRP 
problem with a focus on nonlinear charging functions, 
multiple charging techniques, and en route charging 
with variable power [11]. In addition, there are EVRP 
that take into account various other factors. Keskin  
et al. introduced an EVRP variant with soft time windows 
and charging station waiting times. They divided the day 
into five time periods, each with different queue lengths, 
and employed an M/G/1 queuing system to calculate the 
waiting time at the charging stations for each time period 
[12]. Xiao et al. introduced a novel approach called the 
“Fixed Arc Detour Technique.” This technique involves 
incorporating a fixed optimal charging station access 
detour for each arc. Additionally, the authors devised 
a multifactor influenced electricity consumption model 
[13]. Zhang et al. utilized fuzzy numbers, grounded in 
reliability theory, to depict the uncertainty associated 
with service time, electricity consumption, and travel 
time [14]. Macrina et al. have introduced a novel GVRP 
(Green Vehicle Routing Problem) model tailored to a 
hybrid fleet comprising both electric and conventional 
vehicles [15]. In this study, Bac et al. tackled the local 
charging EVRP by considering multiple vehicle yards, 
heterogeneous electric vehicle fleets, and multiple 
customer visits [16]. Lin et al. examine the influence 
of time-varying electricity pricing on EVRP with time 
windows. They tackle the optimization of a multi-
cycle vehicle path problem, focusing on electric vehicle 
charging and consumption scheduling schemes. The 
research sheds light on the effects of energy pricing, 
service hours, reduced winter range, and fleet size on 
EVRP solutions [17].

In recent years, numerous researchers have explored 
the integration of electric vehicles into the Cold Chain 
Vehicle Routing Planning (CVRP) problem. In CVRP, 
they endeavor to devise a driving speed profile that 
considers both congested and non-congested road traffic 
conditions [18]. Kok proposed a real road network speed 
model that accurately represents traffic congestion 
during peak hours. This model was subsequently 
applied to the cold chain VRP [19]. Based on this 



Optimization of Multi-Temperature Co-Transmission Paths... 3965

premise, Feng conducted a further investigation into 
the variation of vehicle speeds under various traffic 
congestion and weather conditions [20]. Poonthalir 
employed a triangular distribution to model the random 
travel speed, which represents the most probable speed 
between the maximum and minimum values [21]. 
In the context of EVRP, Zhao et al. presented a path 
optimization method for electric vehicles used in fresh 
food delivery, considering the impact of time-varying 
traffic conditions [22]. Currently, fresh food and other 
food products exhibit characteristics of being distributed 
in small and multi-batches within cities. In this context, 
the multi-temperature co-distribution model proves to 
be more suitable. This approach effectively addresses 
the challenge of uniformly delivering the demand for 
multiple layers in cold chain logistics while ensuring 
precise control of temperature and humidity to maintain 
product quality. Wang Shuyun et al. conducted a 
comparative study between two multi-temperature 
co-distribution modes: storage and mechanical. The 
comparison was based on various aspects, including 
their economic viability, safety, flexibility, and 
environmental impact [23]. Subsequently, they developed 
a mathematical model for storage multi-temperature co-
distribution considering random demand scenarios. To 
address the challenges arising from random demand, an 
ex-ante estimation strategy was employed to solve the 
back-to-city replenishment problem [24]. 

In summary, in recent years, research on the 
comparative study of mechanical multi-temperature co-
distribution, storage, and cooling, has predominantly 
centered around the application of conventional vehicles 
for distribution purposes. However, considering the 
unique requirements of urban fresh distribution and 
the pressing concern of air pollution, the distribution of 
goods using electric vehicles emerges as a promising and 
viable alternative. In previous literature, comparisons 
have been made between fuel vehicles and electric 
vehicles in logistics distribution. However, existing 
comparative studies have mainly focused on fuel 
vehicles, specifically those using storage and cooling 
type and mechanical type technologies. Unfortunately, 
there remains a research gap regarding storage and 
cooling type and mechanical type technologies under the 
context of electric vehicles. Most energy consumption 
models for electric vehicles typically focus solely on 
driving distance and often overlook the impact of load 
and other relevant factors. In urban road traffic scenarios, 
taking into account the time-varying road network 
environment can provide a more realistic representation 
of energy consumption and transportation costs. As a 
result, this paper aims to develop optimization models 
for the cold chain logistics path using both storage type 
and mechanical type electric vehicles. The objective is 
to minimize the total cost by considering the influence 
of load and speed variations on the energy consumption 
model within the context of the time-varying road 
network.

Problem Description

Research Hypotheses

The study assumes the presence of a single 
distribution center, an adequate number of electric 
vehicles available for distribution, and knowledge of 
the geographical locations of each customer point and 
charging station. Additionally, the demand, service 
time, and time window for each customer are known. 
Furthermore, the starting point of the vehicle is set to be 
the distribution center. The remaining assumptions are 
as follows:

(1) The electric vehicles operating under the multi-
temperature co-distribution mode must adhere to the 
same specifications, and both the load and driving 
distance should not exceed the maximum limits defined 
by the vehicle specifications.

(2) The distribution process must not only meet the 
time window constraint but also adhere to the power 
constraint.

(3) When the electric vehicle’s power is insufficient 
to meet the distribution requirements, the vehicle needs 
to proceed to the nearest charging station for recharging. 
Charging is only deemed complete once the battery 
reaches its full capacity.

(4) The driving speed of the vehicle varies at different 
times of the day, and the average speed for each time 
period is known.

(5) The cold storage type of multi-temperature 
co-matching, utilizing thermal box transportation, 
provides enhanced product quality assurance, while also 
excluding cargo damage costs from consideration.

Research Questions: What are the distinctions 
between electric vehicle storage and mechanical 
transportation models? What are the comparative results 
for distribution costs? How does travel speed influence 
electric vehicle route selection? How does the energy 
consumption model, accounting for load and different 
speeds, impact the cost of the two distribution modes?

Symbol Description

M = {1,2,···,m} is the collection of the number  
of electric vehicles used. N = {0,1,2,···,n} is  
a distribution center with a collection of customer 
points. W = {0,1,···,w} is a collection of charging stations.  
Z = {1,2,···,z}  is the set of transport product types. 
P11, P21 are the fixed costs per unit of ordinary electric 
vehicle and electric refrigerated vehicle, respectively. 
P12, P22 are the transportation costs per unit time for 
ordinary electric vehicles and electric refrigerated 
vehicles, respectively.  P3 is the price per unit of 
electricity consumed. P4 is the charging price per unit 
of time. Ph is the unit price of product category h. P5  
is the price per unit of product quality. Q, D are the 
maximum load and maximum driving distance of the 
electric vehicle, respectively. b is the maximum number 
of holding tanks per vehicle. aik, [Bi, Ei] are the arrival 
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time of vehicle k at node i, and the time window of node 
i, respectively.  xk

ij is the 0-1 variable, when the electric 
vehicle k is transported in i, j section, xk

ij = 1, otherwise 
xk

ij = 0. yj
k is a 0-1 variable, electric vehicle k if it delivers 

for customer point j, yj
k = 1, otherwise yj

k = 0. zi
k
  is a 0-1  

variable, zj
k = 1 when EVk is charged at charging station 

i, otherwise zj
k = 0.

Interventional studies involving animals or humans, 
and other studies that require ethical approval, must 
list the authority that provided approval and the 
corresponding ethical approval code.

Calculation of Travel Time Under 
Time-Varying Road Network

The speed within the urban road traffic network 
exhibits time variation. This means that the velocity 
of vehicles varies during different time periods, and 
the travel time for each road section between nodes is 
influenced by the starting point on that section and the 
remaining time within the current period. The average 
speed during each time period is depicted in Fig. 1. 
Classify the time of day as T = {[T0,T1],[T1,T2],···,[Tn-1,Tn]}  
,The velocity changes in adjacent time periods. The 
velocities in each time period are V = {v1,v2,v3,···,vn},vn(t) 
is the average speed of travel at time t over time period  

[Tn-1,Tn]. dij is the distance of section [i,j]. The formula for 
calculating the travel time on section [i,j] is as follows.

Tij(0,ti+si) is the moment ti when the electric car 
arrives at the customer’s point i and serves the moment  
ti+si after Si time. Tij(ds,ts+ti+si) denotes the travelling 
time of the vehicle on the road section (i,j) from 
customer point i. ts is the time currently remaining in 
this time period, i.e., when t = [Tn-1,Tn], t = Tn˗t. ds is the 
distance traveled for the remaining time at the average 
speed for the time period in which it is currently located.

When ds<dij

  (1) 

When ds ≥ dij 

  (2) 

Tij(di,t) is the position on the road section [i,j] at time 
t, from i has traveled di distance, from this position to 
the customer point j time required to travel.

When di+ ds<dij

  (3) 

When di+ds≥dij

   (4)

The theoretical diagram of section versus time for 
the above segmentation function is shown in Fig. 2. 
The formula is applied to the subsequent cost model to 
calculate the time required for different road sections.

Model Building

 Cooling Storage Multi-Temperature 
Co-Mingling Model

Cold storage multi-temperature co-distribution 
involves utilizing room-temperature electric vehicles 
equipped with cold storage tanks for distribution. The 
total distribution cost comprises fixed costs, transport 
costs, holding tank expenses, and energy expenditures.

Fig. 1. Time-varying travelling speed on road sections.

Fig. 2. Schematic diagram of time-varying speed on a road section.
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(1) Fixed and transport costs:

  (5)

where K is the number of vehicles used. m is the 
number of available vehicles (k = 1,2,···,m). tijk is the 
travel time of EVk on the i, j sections.

(2) Cost of Insulation Boxes

  (6)

where Ph is the unit cost of holding tanks for category 
h cold chain products. Nh

k is the number of holding tanks 
used for loading category h cold chain products in the  
k th vehicle.

(3) Cost of energy consumption
The amount of energy consumed by electric vehicles 

is related to the load, speed, and transport time. In a 
time-varying road network environment, the electric 
power consumption of a vehicle traveling on the road 
sections i, j is:

  (7)

  (8)

Therefore, the energy cost of electric vehicles in the 
storage and cooling multi-temperature co-provisioning 
model is:

  (9)

where P(Qk, v) is the operating power and g is the 
gravitational acceleration. A, Cd, and f are the wind-
blown area of the EV, the air resistance coefficient, and 
the friction resistance coefficient of the car. ɳ is the 
mechanical transmission efficiency of the system. Q0 
and Qk are the unloaded and current loaded weights of 
the EV. 

(4) Cost of charging
When an electric vehicle’s remaining battery power 

is insufficient to meet the delivery requirements for 
reaching the next service point, it necessitates quick 
charging at the nearest charging station. The cost of 
charging is directly associated with the charging time.

The charging time is , Charging 
costs are

  (10)

where Emax is the maximum battery capacity of the EV. 
Eik is the amount of power left in the EV when it reaches 
the charging station, and rc is the charging efficiency of 
the charging station.

In summary, the total cost of the refrigerated multi-
temperature co-mingling are

  

(11)
The constraints are as follows

  (12)

  

(13)

  (14)

  (15)

  (16)

  (17)

  (18)

  (19)

  (20)

  (21)

(12) The results indicate that the number of 
distribution electric vehicles should be no less than 
the number of distribution routes. (13) It is required 
that a distribution center serves as the starting point 
for a vehicle to complete a distribution task. (14) Each 
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demand point should be served by only one electric 
vehicle and served only once. (15) The total demand 
of customer points in each distribution path must not 
exceed the maximum capacity of the electric vehicle. 
(16) The total distribution distance of each distribution 
path must not exceed the farthest distribution distance 
of the electric vehicle. (17) and (18) represent the time 
window constraints. (19) It is assumed that the EV leaves 
the charging station fully charged. (20) The constraint 
on the electric vehicle’s power to each customer point is 
denoted. (21) The number of holding tanks required is 
indicated.

Mechanical Multi-Temperature Co-Mingling Model

Mechanical multi-temperature co-distribution 
is accomplished through the utilization of electric 
refrigeration vehicles. The overall distribution cost 
primarily comprises fixed costs, transport costs, 
charging costs, energy consumption, refrigeration costs, 
and cargo damage costs. The computation methods 
for charging costs, fixed costs, and transport costs 
remain identical to those applied in cold storage multi-
temperature co-distribution.

(1) Energy and cooling costs
Unlike cold storage distribution, mechanical multi-

temperature co-distribution models incur electricity 
consumption during travel and energy costs for 
refrigeration trucks to provide refrigeration.

  (22)

where Ec and Eo are the power consumption per 
unit of time during traveling, loading, and unloading, 
respectively. tik is the service time of the EV at customer 
point i.

(2) Cost of goods lost
The freshness of fresh products is related to the 

transport time; introducing the freshness of fresh 

products at , the cost of cargo 

damage is

  (23)

where ∂ is the cargo damage factor and qi is the 
demand at customer point i.

In summary, the total cost of mechanically co-
mingling multiple temperatures is

  

(24)
The constraints are (12) to (20).

Algorithm Research

The solution of multi-temperature co-matching 
EVRP models using exact algorithms can be time-
consuming. Therefore, heuristic algorithms are 
commonly employed to address these NP-hard problems. 
Among these, the genetic algorithm stands out as an 
efficient parallel search approach for tackling global 
optimization problems. The specific steps involved in 
applying the genetic algorithm to EVRP problems are 
as follows:

Step 1: Encoding and Decoding. In the context of the 
EVRP, the path selection process must take into account 
both the impact of the vehicle’s load and the necessity to 
visit a charging station when the electric vehicle’s power 
is low. To effectively represent the sequence in which 
each customer is visited in the instance, we employ  
a coding system using natural numbers to designate 
the customers. The customer numbers are represented 
as 1, 2,..., n. The distribution center is denoted as 0. 
Additionally, if there are m charging stations available, 
they are labeled as n+1,..., n+m. The first step involves 
arranging the customer nodes in ascending integer 
order, and then inserting the distribution center 0 among 
the customer points, considering constraints such as the 
vehicle’s maximum load and the demand at each node. 
Subsequently, the decision to visit the nearest charging 
station for recharging is based on the remaining power in 
the electric vehicle. If charging becomes necessary, the 
charging station number is inserted after the customer 
point number requiring recharging.

For example, consider an integer arrangement 
(6, 2, 5, 4, 3, 1, 7, 10, 9, 8) representing the customer 
point order. After incorporating the distribution center 
based on the load and time window constraints, the 
arrangement becomes (0, 6, 2, 5, 0, 4, 3, 1, 7, 0, 10, 9, 
8, 0). Additionally, to cater to the electric vehicle’s 
low power situations, a charging station is inserted, 
resulting in the updated arrangement (0, 6, 2, 11, 5, 0, 
4, 12, 3, 1, 7, 0, 10, 9, 8, 0). Decoding is the reverse 
process of encoding, wherein the decoded path for this 
chromosome is as follows:

Path 1: 0, 6, 2, 11, 5, 0
Path 2: 0, 4, 12, 3, 1, 7, 0
Path 3: 0, 10, 9, 8, 0
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The study employs three electric vehicles for 
delivery purposes, each undergoing two charging events 
during their respective routes.

Step 2: Population initialization. The selection of 
the population size typically falls within the range of 20 
to 200. If the number of chromosomes is too small, it 
may fail to yield the global optimal result. Conversely, 
an excessively large number of chromosomes will 
increase computation and impede solution efficiency. 
Consequently, we opt for a population size of 100.Each 
chromosome’s coding rule can be understood from 
the coding example in Step 1, where the customers 
are generated in random order. To create a single 
chromosome, we insert the distribution center and 
charging station based on load and power constraints. 
This process is repeated until 100 chromosomes are 
generated, thereby forming the initial solution.

Step 3: Determination of the adaptation function. 
The primary objective of both multi-temperature co-
matching EVRP models is to minimize the total cost. 
In this context, the fitness value of the chromosome is 
directly proportional to the probability of its inheritance 
to the next generation. As a result, the fitness function is 
formulated as the inverse of the objective function.

Step 4: Selection. The selection process starts 
with an elite retention strategy, where fitness values 
are ranked based on their magnitude. The top 5% of 
chromosomes are preserved as elite candidates for the 
subsequent generation’s population. The remaining 95% 
of chromosomes are selected using the roulette wheel 
selection method. Chromosomes with high fitness are 

chosen for crossover and mutation in the next-generation 
population.

Step 5: Crossover. During the chromosome coding 
process in the EVRP problem, the insertion of charge 
station numbers may occur, and performing crossover 
and mutation can disrupt the original position of charge 
station insertion, resulting in numerous inferior solutions 
in the offspring. To address this, the gene representing 
the insertion of the charging station should be removed 
before carrying out the crossover and mutation 
operations. The crossover operation involves selecting 
genes that are not duplicated on the parent chromosomes 
and placing them sequentially into the offspring. For 
instance, considering parent P1 (1,2,3,4,5,6,7) and P2 
(6,4,2,3,7,1,5), the crossover produces offspring O1 
(1,6,2,4,3,5,7,1) and O2 (6,1,4,2,3,7,5).

Step 6: Mutation. Genetic variation is inherent 
in the process of genetic manipulation, and the 
mutation of chromosomes is necessary to avoid 
premature maturation, which could lead to rapid local 
convergence and ensure chromosomal diversity. To 
execute the mutation operation, several gene positions 
on the parent chromosomes are randomly selected and 
then rearranged, while keeping the other positions 
unchanged.

Step 7: Evolutionary Reversal Operation. In order 
to enhance the solution quality and expedite local 
convergence, a reversal operation is conducted on 
chromosomes that have already undergone selection 
and crossover mutation operations. The process 
involves randomly generating two integers to determine  

Nodes
Coordinates Requirement Type h Nodes Coordinates Requirement 

Type h

x y h = 1 h = 2 x y h = 1 h = 2

1 77 84 5 0 16 8 60 10 5

2 34 96 5 5 17 59 67 5 0

3 56 0 0 5 18 62 41 5 10

4 49 74 5 5 19 39 91 5 0

5 93 94 10 5 20 0 75 5 0

6 43 77 5 10 21 0 34 0 10

7 36 14 5 0 22 69 29 10 5

8 41 99 5 0 23 70 5 5 10

9 11 70 0 10 24 84 25 5 5

10 83 16 5 5 25 48 92 5 0

11 28 1 5 0 26 34 84 5 10

12 43 68 10 5 27 86 3 15 0

13 24 6 10 5 28 69 28 0 10

14 29 65 0 15 29 39 81 0 5

15 35 97 5 5 30 5 92 5 5

Table 1. Customer location and demand information.
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the positions within the chromosome, and subsequently 
reversing the sequence between the two positions, 
thereby generating a new chromosome. For instance, 
consider the parent chromosome P1 (1,2,3,4,5,6,7). 
Randomly generated integers, say 3 and 6, are used to 
perform the reversal operation, resulting in the offspring 
chromosome O1 (1,2,6,5,4,3,7). It is important to note 
that only reversals leading to improved fitness values are 
deemed valid.

The number of iterations in the algorithm 
calculation is set to 500, and the calculation process will 
automatically terminate when this number is reached.

Example Analysis

Example Data and Parameter Setting

The experimental data is sourced from the Figshare 
database (https://doi.org/10.6084/m9.figshare.10288326), 
specifically utilizing the example R-2-C-30 as the 
simulation data. This particular example comprises 30 
customer points and 2 charging stations. The coordinates 
of the distribution center are (43, 55), while the charging 
station coordinates are (25, 25) for station 31 and (50, 

25) for station 32. To align with the necessary criteria, 
certain demand data are configured and presented in 
Table 1.

The speed of vehicles in urban road traffic varies 
with time, and these speeds are categorized into two 
periods: congestion and normal driving. The congestion 
period corresponds to the morning peak hours from 7:00 
a.m. to 9:00 a.m., during which the average speed is 
25 km/h. The normal driving period occurs during the 
evening peak hours from 5:00 p.m. to 8:00 p.m., with an 
average speed of 40 km/h.

The genetic algorithm was employed to address the 
problem using a computer processor with a clock speed 
of 2.20 GHz, 4 GB of memory, and MATLAB (R2018b). 
The relevant parameters were configured as indicated in 
Table 2.

Experimental Results Analysis

In this study, we employ the genetic algorithm to 
address the path optimization problem concerning 
storage-cooled multi-temperature co-distribution and 
mechanical multi-temperature co-distribution electric 
vehicles. The resulting vehicle transportation paths 
are presented in Table 3 and Table 4, while the path 
optimization diagram is depicted in Fig. 3.

From Table 3 and Table 4, it is evident that the 
number of distribution paths remains consistent in 
the optimal paths of the two multi-temperature co-
distribution modes. In comparison to the refrigeration 
storage mode, the mechanical mode exhibits a more 
uniform vehicle load per path, higher charging 
frequency, and longer charging time. These differences 
can be primarily attributed to the mechanical multi-
temperature co-distribution mode of electric refrigerated 
vehicles, which incurs power consumption during both 
driving and refrigeration processes. Considering electric 
vehicles with the same battery capacity, the storage and 
cooling method in multi-temperature co-dispensing 
transportation can effectively conserve energy and 
reduce resource wastage.

Parameter Parameter 
value Parameter Parameter value

P11 100 yuan/veh Q0 2t

P21 120 yuan/veh g 9.81 m/s2

P12/P22 50 yuan/h f 0.015

Ph 15/25 yuan Cd 0.6

P3 0.5 yuan/kwh η 1.46

P4 1 yuan/min Ec 4kw/h

P5 1 yuan/kg E0 5kw/h

∂ 0.01 A 6 m2

Table 2. Model parameter values.

Fig. 3. Distribution roadmap in both models.
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The experimental results for each cost are presented 
in Table 5. The table includes the following costs in 
yuan: fixed cost (GC), transportation cost (YC), energy 
consumption cost (NC), charging cost (CC), holding 
tank cost (BC), cargo loss cost (HC), and total cost (TC).

Based on Table 5, it is evident that:
(1) The total distribution cost of the cold storage 

type multi-temperature co-distribution is $375.99 lower 
than that of the mechanical type multi-temperature co-
distribution, making it a more economically efficient 
option. Analyzing each cost component, the unit 
cost of mechanical multi-temperature co-distribution 
utilizing electric refrigerated cars is 50 yuan higher 
per car compared to ordinary electric cars. On the 
other hand, for the ordinary electric car’s storage type, 
insulation boxes are required to maintain the cold chain 
products’ freshness and meet the necessary temperature 
requirements. Consequently, an additional cost of  
160 yuan is incurred for the insulation boxes. 
Considering both vehicle usage and preservation of 
freshness, the cold storage type proves to be 40 yuan 
cheaper than the mechanical type.

(2) The transportation cost of the mechanical type 
is $19.75 higher than that of the cold storage type. This 
cost discrepancy can mainly be attributed to the longer 
transportation time associated with the mechanical 
types. On the other hand, electric vehicles (EVs) incur 
additional energy consumption during the driving 
process, and the cooling of the freezer also adds to the 
electricity consumption. The energy cost of the EV’s 
driving process is dependent on factors such as speed, 
load, and delivery time, contributing to the mechanical 
type’s energy cost being as much as $201.27 higher than 
that of the storage and cooling type. As evident from 
Tables 3 and 4, the mechanical type also requires longer 
charging times, which further increases the charging 
cost. 

(3) In comparison to cold storage type multi-
temperature co-distribution, the utilization of 
mechanical electric refrigerated vehicles for distribution 
results in internal and external heat exchange during 
transportation and unloading. This leads to increased 
energy costs and cargo loss expenses. Moreover, 
besides ensuring product freshness, it facilitates the 
transfer of the insulation box and products to other 
suitable vehicles and allows for the reusability of the 
insulation box in case of transportation-related traffic 
congestion or accidents. As a result, the storage-type 
multi-temperature co-distribution transport mode offers 
enhanced economic viability, improved product security 
and safety, and higher resource utilization.

Sensitivity Analysis

(1) Battery Capacities Variation
The battery capacity of an electric vehicle 

significantly influences its range and charging time, 
consequently impacting the distribution path and cost.  
In this study, two multi-temperature co-distribution 
modes were considered, with battery capacities of  

Number Path Load (kg) Charging times Charging time (h)

1 0—29—16—9—20—31—13—7—23 –3—10—32—14--0 100 2 3.13

2 0—22—18—0 30 0 0

3 0—17—12—6—26—19—25—1—32—28—0 75 1 1.21

4 0—5—32—27—24—4—8—15—2—31—21—30—31—11—0 100 3 3.31

Number Path Load (kg) Charging times Charging time (h)

1 0—16—20—31—12—17—4—15—31—9—14—0 85 2 2.19

2 0—29--26—2—31—13—11—7—24—32—22—0 80 2 3.01

3 0—21—31—3—23—10—27—32—25—19—8—32—18—0 85 3 4.48

4 0—6—30—31—1—5—32—28—0 55 2 1.66

Distribution 
mode

Cooling 
storage type Mechanical Difference

GC 400 600 200

YC 885.59 905.34 19.75

NC 147.78 349.05 201.27

CC 287.27 314.37 27.1

BC 160 0 160

HC 0 87.88 87.88

TC 1880.65 2256.64 375.99

Table 3. Accumulator type multi-temperature co-mingling path results.

Table 4. Mechanical multi-temperature co-mingling path results.

Table 5. Distribution Cost Comparison.
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150 kWh, 120 kWh, and 100 kWh. The corresponding 
results and findings are presented in Table 6.

As shown in Table 6, the number of vehicles used 
remains constant for both modes, despite the variance 
in battery capacities. As the capacity decreases, so 
does the charging time. When the battery capacity 
is set at 100 kWh, the mechanical type exhibits the 
lowest energy and transportation costs, indicating lower 
power consumption and shorter transportation time. 
Moreover, the charging and cargo damage costs are also 

minimized, resulting in an overall optimal total cost at 
this battery capacity.

Due to the reduction in battery capacity, the 
charging frequency increases, while each charging time 
decreases. Consequently, there might be less remaining 
power after returning to the distribution center along 
the route. It is essential to avoid excessive unused power 
after a full charge. The storage and cooling-type multi-
temperature co-distribution system, with a battery 
capacity of 120 kWh, exhibits a lower total distribution 
cost despite its higher charging cost compared to the 100 

Distribution mode
battery capacity (kWh)

Cooling storage type Mechanical
150 120 100 150 120 100

GC 400 400 400 600 600 600

YC 885.59 752.83 1010.73 905.34 838.21 786.13

NC 147.78 120.81 153.52 349.05 315.48 282.32

CC 287.27 248.13 174.30 314.37 283.10 225.28

BC 160 160 160 0 0 0

HC 0 0 0 87.88 77.15 66.03

TC 1880.65 1681.77 1898.56 2256.64 2113.95 1959.76

Distribution mode
Load (kg)

Cooling storage type Mechanical
100 80 60 100 80 60

GC 400 400 600 600 600 900

YC 885.59 1009.89 1023.01 905.34 989.92 1020.68

NC 147.78 169.67 153.95 349.05 357.80 354.19

CC 287.27 301.69 403.75 314.37 367.26 560.97

BC 160 160 240 0 0 0

HC 0 0 0 87.88 90.59 89.47

TC 1880.65 2041.26 2420.71 2256.64 2405.58 2925.33

Distribution mode
Speed (km/h)

Cooling storage type Mechanical

40 50 60 40 50 60

GC 400 400 400 600 600 600

YC 885.59 817.66 672.54 905.34 710 630.33

NC 147.78 207.73 283.28 349.05 361.78 449.70

CC 287.27 266.17 204.13 314.37 271.31 377.65

BC 160 160 160 0 0 0

HC 0 0 0 87.88 68.79 67.05

TC 1880.65 1851.56 1717.95 2256.64 2012.24 2124.73

Table 6. Comparison of results for different battery capacities.

Table 7. Comparison of results for different loads.

Table 8. Comparison of different distribution results.
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kWh battery capacity. Hence, for both distribution cost 
and power resource utilization, the storage and cooling-
type system are optimized with a battery capacity of 
120 kWh.

(2) Different loads
The results of the two multi-temperature co-

matching modes with loadings of 100 kg, 80 kg, and 60 
kg, respectively, are presented in Table 7.

From Table 7, it is evident that the maximum load 
capacity of the electric vehicle is 80 kg, while the 
conventional vehicle can carry up to 100 kg. The number 
of vehicles remains unchanged in both modes. Moreover, 
the costs associated with cargo damage and holding 
tanks show no significant variation. However, there is an 
increase in transportation costs and transportation time. 
Additionally, energy consumption costs and charging 
costs are higher. Notably, energy consumption costs are 
directly influenced by the load weight and transportation 
time. Despite the reduction in load capacity by 20 kg, 
there is a disproportionate increase in transportation 
time. Consequently, the energy consumption cost rises.

When considering a maximum load capacity of 60 kg 
for electric vehicles, it is evident that the existing fleet 
of electric vehicles cannot adequately meet the demand 
of each distribution point. Consequently, there is a need 
to increase the number of vehicles used, resulting in 
higher fixed and transportation costs. As a result, the 
overall distribution cost increases significantly. Hence, 
the selection of the vehicle’s load weight plays a crucial 
role in determining distribution costs, including energy 
consumption. Therefore, it is imperative to choose an 
appropriate electric vehicle loading capacity.

(3) Different speeds
In the congestion period, the speed cannot be 

controlled, while during normal driving times, there 
is room for speed control. The average speeds in the 
normal driving period are 40 km/h, 50 km/h, and  
60 km/h, respectively. The corresponding solution 
results are presented in Table 8.

From Table 8, the relationship between speed, 
transportation time, transportation cost, and energy 
consumption cost becomes evident. As speed 
increases, both transportation time and transportation 
cost decrease, while the energy consumption cost 
increases accordingly. This observation holds true 
under the assumption of a constant load weight. The 
findings suggest that energy consumption is directly 
affected by the vehicle’s speed and transportation time. 
Consequently, selecting an appropriate driving speed 
can lead to electricity savings and a more efficient 
utilization of resources.

The lowest total cost of distribution for the cold 
storage multi-temperature co-distribution model 
occurs at a speed of 60 km/h. Despite the increase in 
energy costs, it does not fully offset the cost reduction 
achieved at higher speeds due to significant changes in 
transport costs. For the mechanical multi-temperature 
mode, the lowest total distribution cost is observed at 
a speed of 50 km/h. The variation in transport cost is 

relatively small when the speed is changed from 50 to 
60 km/h. Additionally, the driving process incurs higher 
energy costs, and the refrigeration for freezing results 
in additional energy expenses, leading to considerable 
changes in energy cost and charging cost.

Consequently, to optimize economic efficiency, 
the normal driving speed is set at 60 km/h for the 
cold storage distribution mode and 50 km/h for the 
mechanical distribution mode. When the speed is set 
at 60 km/h, the total cost of the cold storage and multi-
temperature co-distribution modes is minimized. 
However, as the speed increases, the transport cost 
varies significantly, and the increase in energy cost is 
insufficient to compensate for the reduced overall cost.

In the mechanical multi-temperature co-distribution 
model, the lowest total distribution cost is achieved at  
a speed of 50 km/h. The change in transport costs from 
50 to 60 km/h is relatively small. Additionally, apart 
from incurring higher energy costs during travel, the 
reefer also generates additional energy costs during 
freezing. Therefore, to maximize economic benefits, 
the normal driving speed is set at 60 km/h for the 
cold storage distribution mode and 50 km/h for the 
mechanical distribution mode.

Conclusion

This study addresses the path optimization problem 
of cold storage multi-temperature co-distribution and 
mechanical multi-temperature co-distribution electric 
vehicles. The objective function is to minimize the 
total cost, and a genetic algorithm is utilized to solve 
the problem. Comparative analysis of experimental 
results reveals that the cold storage multi-temperature 
co-distribution mode offers higher economic benefits, 
safety, resource utilization rate, and applicability. 
The economic benefits mainly stem from lower total 
distribution costs. Safety and applicability are mainly 
attributed to the insulation box’s ability to maintain 
a constant temperature, ensuring product quality and 
food safety over the long term. In unexpected situations, 
such as traffic accidents causing severe road congestion 
during transportation, the insulation box can be easily 
transferred to other usable vehicles, demonstrating 
strong applicability. The reusability of the insulation 
box and the lower electricity consumption and charging 
requirements of electric vehicles in cold storage mode 
contribute to energy savings and efficient resource 
utilization.

Furthermore, we conducted a sensitivity analysis 
on the load capacity, maximum battery capacity, 
and normal driving speed of the two modes. The 
experimental results indicated that the cold storage 
multi-temperature co-distribution mode achieved the 
optimal total delivery cost when the battery capacity 
was 120 kWh, the maximum load capacity was 100 kg, 
and the normal driving speed was 60 km/h. On the other 
hand, the mechanical multi-temperature co-distribution 
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mode attained the optimal total delivery cost when the 
battery capacity was 100 kWh, the maximum load was 
100 kg, and the normal driving speed was 50 km/h.

It is essential to note that this study only focuses 
on the path optimization problem of multi-temperature 
co-distribution electric vehicles under predetermined 
demand. Future research could explore the integration of 
new technologies such as the Internet of Things and Big 
Data cloud computing to dynamically plan vehicle paths 
by updating demand data in real-time environments.
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